skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Engle‐Wrye, Nicholas J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseEndophytic plant‐microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi‐parasitic relationships. In contrast to root‐associated endophytes, the role of environmental and host‐related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. MethodsWe used a broad geographic coverage of North America in the genusHeucheraL. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. ResultsAssembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root‐associated microbial communities, in this system microbes show no relationship with pH or other soil factors. ConclusionsOverall, this work improves our understanding of the large‐scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host‐related factors in driving different microbial communities within the leaf microbiome. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Eaton, Deren (Ed.)
    Abstract Applications of molecular phylogenetic approaches have uncovered evidence of hybridization across numerous clades of life, yet the environmental factors responsible for driving opportunities for hybridization remain obscure. Verbal models implicating geographic range shifts that brought species together during the Pleistocene have often been invoked, but quantitative tests using paleoclimatic data are needed to validate these models. Here, we produce a phylogeny for Heuchereae, a clade of 15 genera and 83 species in Saxifragaceae, with complete sampling of recognized species, using 277 nuclear loci and nearly complete chloroplast genomes. We then employ an improved framework with a coalescent simulation approach to test and confirm previous hybridization hypotheses and identify one new intergeneric hybridization event. Focusing on the North American distribution of Heuchereae, we introduce and implement a newly developed approach to reconstruct potential past distributions for ancestral lineages across all species in the clade and across a paleoclimatic record extending from the late Pliocene. Time calibration based on both nuclear and chloroplast trees recovers a mid- to late-Pleistocene date for most inferred hybridization events, a timeframe concomitant with repeated geographic range restriction into overlapping refugia. Our results indicate an important role for past episodes of climate change, and the contrasting responses of species with differing ecological strategies, in generating novel patterns of range contact among plant communities and therefore new opportunities for hybridization. The new ancestral niche method flexibly models the shape of niche while incorporating diverse sources of uncertainty and will be an important addition to the current comparative methods toolkit. [Ancestral niche reconstruction; hybridization; paleoclimate; pleistocene.] 
    more » « less
  3. null (Ed.)